The search functionality is under construction.

Author Search Result

[Author] Masahiko NISHIMOTO(24hit)

21-24hit(24hit)

  • FOREWORD Open Access

    Akira KOMIYAMA  Masahiko NISHIMOTO  

     
    FOREWORD

      Vol:
    E95-C No:1
      Page(s):
    1-2
  • Time-Frequency Analysis of Scattering Data Using the Wavelet Transform

    Masahiko NISHIMOTO  Hiroyoshi IKUNO  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1440-1447

    Scattering data from radar targets are analyzed in the time-frequency domain by using wavelet transform, and the scattering mechanisms are investigated. The wavelet transform used here is a powerful tool for the analysis of scattering data, because it can provide better insights into scattering mechanisms that are not immediately apparent in either the time or frequency domain. First, two types of wavelet transforms that are applied to the time domain data and to the frequency domain data are defined, and the multi-resolution characteristics of them are discussed. Next, the scattering data from a conducting cylinder, two parallel conducting cylinders, a parallel-plate waveguide cavity, and a rectangular cavity in the underground are analyzed by using these wavelet transforms to reveal the scattering mechanisms. In the resulting time-frequency displays, the scattering mechanisms including specular reflection, creeping wave, resonance, and dispersion are clearly observed and identified.

  • A Method for Detecting Shallowly Buried Landmines Using Sequential GPR Data

    Masahiko NISHIMOTO  Ken-ichiro SHIMO  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2362-2368

    A method for detecting shallowly buried landmines using sequential ground penetrating radar (GPR) data is presented. After removing a dominant coherent component arising from the ground surface reflection from the GPR data, three kinds of target features related to wave correlation, energy ratio, and signal arrival time are extracted. Since the detection problem treated here is reduced to a binary hypothesis test, an approach based on a likelihood ratio test is employed as a detection algorithm. In order to check the detection performance, a Monte Carlo simulation is carried out for data generated by a two-dimensional finite-difference time domain (FDTD) method. Results given in the form of receiver operating characteristic (ROC) curves show that good detection performance is obtained even for landmines buried at shallow depths under rough ground surfaces, where the responses from the landmines and that from the ground surface overlap in time.

  • FOREWORD Open Access

    Masahiko NISHIMOTO  Hiroshi SHIRAI  

     
    FOREWORD

      Vol:
    E96-C No:1
      Page(s):
    1-2
21-24hit(24hit)